Applications of big data to smart cities

Many governments are considering adopting the smart city concept in their cities and implementing big data applications that support smart city components to reach the required level of sustainability and improve the living standards. Smart cities utilize multiple technologies to improve the performance of health, transportation, energy, education, and water services leading to higher levels of comfort of their citizens. This involves reducing costs and resource consumption in addition to more effectively and actively engaging with their citizens. One of the recent technologies that has a huge potential to enhance smart city services is big data analytics. As digitization has become an integral part of everyday life, data collection has resulted in the accumulation of huge amounts of data that can be used in various beneficial application domains. Effective analysis and utilization of big data is a key factor for success in many business and service domains, including the smart city domain. This paper reviews the applications of big data to support smart cities. It discusses and compares different definitions of the smart city and big data and explores the opportunities, challenges and benefits of incorporating big data applications for smart cities. In addition it attempts to identify the requirements that support the implementation of big data applications for smart city services. The review reveals that several opportunities are available for utilizing big data in smart cities; however, there are still many issues and challenges to be addressed to achieve better utilization of this technology.

1 Introduction

Undoubtedly, the main strength of the big data concept is the high influence it will have on numerous aspects of a smart city and consequently on people’s lives [1]. Big data is growing rapidly, currently at a projected rate of 40 % growth in the amount of global data generated per year versus only 5 % growth in global IT spending. Around 90 % of the world’s digitized data was captured over just the past two years. As a result, many governments have started to utilize big data to support the development and sustainability of smart cities around the world. That allowed cities to maintain standards, principles, and requirements of the applications of smart city through realizing the main smart city characteristics. These characteristics include sustainability, resilience, governance, enhanced quality of life, and intelligent management of natural resources and city facilities. There are well-defined components of the smart city, such as mobility, governance, environment, and people as well as its applications and services such as healthcare, transportation, smart education, and energy [2]. To facilitate such applications and services large computational and storage facilities are needed. One way to provide such platforms is to rely on Cloud Computing and utilize the many advantages of using cloud services to support smart city big data management and applications. Figure 1 demonstrates how cloud computing can support big data collection, storage and analysis across cloud nodes and facilities.

Current work and research projects in this field have generated some literature that highlighted the importance of big data in supporting smart city applications and services. In addition, some work investigated some of the issues of utilizing big data in smart cities [3–6]. The main contribution of this paper is reviewing the application of big data in smart city and exploring the opportunities and challenges for utilizing big data in smart city. In addition, the paper investigates the general requirements for the design and implementation of big data based applications for smart city applications and services.

This paper will first, in Section 2, introduce the concepts of a smart city, big data, and applications of big data in a smart city. We will also investigate the current definitions of these concepts available in the literature and we will compare them. In Section 3 we will discuss the benefits and opportunities of smart cities, big data, and their applications and in Section 4 we will identify the challenges of using big data for smart city applications and services. We will then move to offering an overview of the general requirements to implement smart city applications based on big data in Section 5. In Section 6 we will discuss and illustrate some open issues that may help other researchers start their research in the field and in Section 7 we will conclude the paper.

2 Background

The smart city concept has different connotations from the people’s perspective versus the technological perspective. This is clear when countries set initiatives to become smart cities because they give different points of view around the smart city. Although there is a prevalence of the smart city phenomena worldwide, there is obscurity its definition. “The smart city sector is still in the ‘I know it when I see it’ phase, without a universally agreed definition”. In other words, a shared definition of a smart city is not yet offered, and it has been difficult to pinpoint a standard global meaning. However, the majority of definitions highlight common characteristics, features, and components that may specify the perspectives of smart cities. Examples include the enhancement of the quality of life for a particular segment–city citizens–through utilizing information technology hardware, software, networks, and data on different city areas and services. It could also involve various city components like natural resources, infrastructures, power, transportation, education, healthcare, government, and public safety. Table 1 depicts different definitions of a smart city that focus on some of these different areas.

In addition, there are some characteristics and features of big data that are called the Vs of big data management. According to [8] these include the main 3 Vs (1, 2 and 3) and two additional Vs:

  1. 1. Volume: refers to the size of data that has been created from all the sources.
  2. 2. Velocity: refers to the speed at which data is generated, stored, analyzed and processed. An emphasis is being put recently on supporting real-time big data analysis.
  3. 3. Variety: refers to the different types of data being generated. It is common now that most data is unstructured and cannot be easily categorized or tabulated.
  4. 4. Variability: refers to how the structure and meaning of data constantly changes especially when dealing with data generated from natural language analysis for example.
  5. 5. Value: refers to the possible advantage big data can offer a business based on good big data collection, management and analysis.

Others also mention a few more Vs of big data that cover some more aspects. For example volatility, which refers to the retention policy of the structured data implemented from different sources. Also there is validity that refers to the correctness, accuracy, and validation of the data. In addition there is veracity, which refers to the accuracy and truthfulness of the captured data and the meaningfulness of the results generated from the data for certain problems.

The various characteristics of big data demonstrate the huge potential for gains and advancements. The possibilities are endless; however, bounded by the available technologies and tools available. For big data to achieve its goals and advance services in smart cities, it needs the right tools and methods to be analyzed and classified effectively and efficiently. By understanding the available capabilities and limitations, we can capture many opportunities for better services and applications for smart cities using big data.

3 Benefits and opportunities

Currently, many cities compete to be smart cities in hopes of reaping some of their benefits economically, environmentally and socially. As a result, may are eying the opportunities made possible by using big data analytics in smart city applications. Therefore, we will discuss in this section some of the benefits and opportunities that may help in making the decision to convert or redesign a city to become a smart city. With such decision, it may be possible to achieve enhanced levels of sustainability, resilience, and governance. In addition to improving the citizen’s quality of life and introducing intelligent management of infrastructures and natural resources [2]. Some of the benefits of having a smart city include the following:

  1. 1. Efficient resource utilization: With many resources becoming either scarce or very expensive, it is important to integrate solutions to have better and more controlled utilization of these resources. Starting with technological systems such as Enterprise resource planning (ERP) and Geographic Information System (GIS) [9] will be useful. With monitoring systems at work, it will be easier to spot waste points and better distribute resources while controlling costs, and reducing energy and natural resources consumption. In addition, one of the important aspects of smart city applications is that they are designed for interconnectivity and data collections which can also facilitate better collaboration across applications and services.
  2. 2. Better quality of life: With better services, more efficient work and living models, and less waste (in time and resources), smart city citizens will have a better quality of life. This is the result of better planning of living/work spaces and locations, more efficient transportation systems, better and faster services, and the availability of enough information to make informed decision.
  3. 3. Higher levels of transparency and openness: The need for better management and control of the different smart city aspects and applications, will drive the interoperability and openness to higher levels. Data and resource sharing will be the norm. In addition, this will increase information transparency for everyone involved. This will encourage collaboration and communication between entities and creating more services and applications that further enhance the smart city. One example is the US government that collected and released a wide range of data, publications, and content in the name of transparency and openness. These offered the citizens and the government entities the chance to exchange and use the data effectively.

These benefit to be achieved require high levels of sophistication and involvement in terms of the applications, resources and people involved. The opportunities to achieve these benefits are available; however, they require investing in more technology, better development efforts and effective use of big data. There is also the need to set policies to ensure data accuracy, high quality, high security, privacy, and control of the data as well as using data documentation standards to provide guidance on the content and use of the datasets [10]. In addition, technology can be very useful when considering the management and protection of environmental resources and infrastructures, and natural resources with the ultimate goal of increasing sustainability [11].

Big data applications have the potential to serve many sectors in a smart city [8]. It helps provide better customer experiences and services, which help businesses achieve better performance (e/.g. higher profits or increased market shares). Improve healthcare by improving preventive care services, diagnosis and treatment tools, healthcare records management and patient care. Transportation systems can greatly benefit from big data to optimize route and schedules, accommodate for varying demands and being more environmentally friendly.

Deploying big data applications require the support of a good information and communication technology (ICT) infrastructure. ICT supports smart cities because it provides useful solutions and also unique solutions that may not be possible without it. For example, it enables efficient transport planning by providing easy ways to handle their services from different fields/locations to reduce transportation costs [11]. Other examples include providing better water management and improved waste management by applying innovations to effectively manage these services. For example, waste management includes waste collection, disposal, recycling, and recovery [12], all of which can be efficiently managed using ICT solutions. More examples include new construction and structural methods for the health of buildings and better environment; risk management; safety and security; air quality and pollution; public health; urban sprawl; bio-diversity loss; and energy efficiency. In general, a smart city can be made smarter when utilizing ICT and big data for many of its applications and services.

Adopting ICT, Cloud and big data solutions will help address many issues such as providing the storage and analysis tools. In addition this will help to reach the innovation stage [2] and encourage collaboration and communication between the different entities of a smart city. This can be done by building big data communities to work as one entity to foster collaborative and creative solutions addressing applications for areas like education, health, energy, law, manufacturing, environment, and safety. This also helps in real-time solutions to challenges in agriculture, transportation, and crowd management as applications and systems are integrated and information flows easily cross applications and entities [10]. There are many examples of big data applications serving smart cities such as:

  1. 1. Smart education [13]: ICT provides a solution to enhance the education processes’ efficiency, effectiveness, and productivity using education smart services that are flexible and intelligent to provide better use of information, enhanced control and assessment, higher support for life-long learning for all people (citizens and stakeholders). Smart education applications will engage people in active learning environments that allow them to adapt to the rapid changes of society and the environment. In addition, by relying on big data collected in the field and correctly processed to generate the required information, we will have a positive effect on the knowledge levels and teaching/learning tools to deliver or acquire knowledge. Furthermore, technology can make such opportunities available everywhere including remote or rural areas where commuting to schools may not be possible or the economic status of people is low and they cannot afford other more expensive models. Using ICT and big data will also help create a knowledge-based society, which will enhance the nation’s capability in competitiveness. Big data in education is generated mainly by collecting data on people (e.g. students, teachers, parents, administrators, and other support personnel), infrastructures (e.g. schools, libraries, computing facilities, educational locations, museums, universities, and other related entities), and information (e.g. courses, books, exams, grades, economic surveys, assessments, reports, and much more). This data can create a useful resource for analysis and extracting useful trends, models and using them to offer better and more enhanced education. As an example, big data supports educational organizations to personalize learning [14], “create communities of practice and standardize the presentation of knowledge” [15]. Big data in education can be also utilized to observe educational shortages to enhance study curriculums.
  2. 2. Smart traffic lights [16]: One of the main aspects of smart cities is a good control of the traffic flow within the city, which will enhance the transportation systems and improve the citizens’ commutes and the cities overall traffic patterns. When the population increases, traffic problems, pollution, and economic problems happen. Due to this, the use of smart traffic lights and signals is one of the most important techniques that smart cities use to deal with high volumes of traffic and congestions. Smart traffic lights and signals should be interconnected across the traffic grids to offer more information about traffic patterns. Each sensor detects a different parameter of the traffic flow (e.g. the speeds of cars, traffic density, waiting time at the lights, traffic jams, etc.). The system makes decisions according to the values of these parameters and gives the appropriate instructions to the lights and signals. Thus, the more data available to this system, the more informed decisions it will be able to make. As a result, to offer the best possible services in smart traffic lights, it will be best to collect data from all traffic lights across the city and build intelligent decision systems using this data. This requires the use of real-time big data analytics. As an example, implementing smart traffic lights and signals designed by the Traffic21 project in Pittsburgh, Pennsylvania, USA obtained significant results, which reduced traffic jams and waiting times resulting in reduced emissions by over 20 %.
  3. 3. Smart grid: The smart grid is an important component of a smart city. It is a renovated electrical grid system that uses information and communication technology to collect and act on available data, such as information about the behaviors of suppliers and consumers, in an automated fashion to add some values [17]. It improves the efficiency, reliability, economics, and sustainability of the production and distribution of electric power. A smart grid uses computer-based remote controls with two-way communication technology between power producers and consumers to increase grid efficiency and reliability through system self-monitoring and feedback. This involves placing smart sensors and meters on production, transmission, and distribution systems in addition to consumers access points to get granular near real-time data about the current power production, consumption, and faults. It implements dynamic pricing models for power usage to smooth out peaks by applying high charges during peak times and lower charges during other periods. This helps avoid potential power outages due to high consumer demands. It can provide consumers with near real-time information about their energy use and allow them to manage their usage based on both their needs and their affordable prices. Consumer devices such as washing machines and water heaters can be more cost-effective by controlling them automatically to operate during lower pricing periods. Although the smart grid has many potential benefits, it requires the collection of huge amount of data from power procedures, transmissions, distributors, and consumers [18]. In addition, it requires processing the collected data, which is considered big data analytics, in real-time to send back some control information to improve the overall performance of the electric power system [19].

We reviewed several examples of big data applications, which can be considered as guides to lead smart city applications development efforts. Many achieved various levels of success and most added valuable components to enhance smart city services and applications. Table 3 shows how cities around the world utilize applications of big data in different smart city components by implementing real smart city projects. Reviewing some of the actual implementations revealed that there are benefits of big data that reflect on smart city components. Table 4 summarizes these benefits within the different application domains used in smart cities.

As we end this discussion, we can affirm to how vital big data is for smart city applications. We have shown several examples of using big data and the benefits of doing so. However, to effectively use big data for smart city applications, there are some open issues that need to be addressed and resolved. Several of these open issues stem from the different challenges we discussed earlier, while some may relate to other aspects we did not consider. Yet many of these open issues are currently under scrutiny and investigation by industry and research communities. However, no full solutions are offered and there is always room for improvements and innovations in this field. Some of these open issues include, but are not limited to the following:

  1. 1. Is Social Media an important data source in smart cities and how communication will look like between governments, citizens, and businesses? When everything is connected and integrated, should all entities public and private have access and rights to the same information and knowledge?
  2. 2. Security and privacy issues are another important issue to be carefully considered. When all systems are integrated, data will be shared among all entities in the smart city. Therefore, the infrastructure and platforms must be secured, privacy must be preserved and information must be fully protected.
  3. 3. The political considerations and effects on any city play a role on how we (or not) it will perform and that also applies too smart cities. The privilege of access to information by different people in different power or political positions must be taken in consideration and addressed carefully.
  4. 4. The side effects of using technology is another issue to study. Since we will have a communication infrastructure that spans private and public networks many of which may be wireless we must consider all the possible risks and consequences of their use. In addition, many devices owned and operated by different people for various purposes and in so many different level of experience with ICT will be no board. It is generally unknown how this level of interaction with technology will affect the users and whether there will be negative effects on them. For example, many talk about the harmful effects of having cell phones nearby for extended periods of time, thus it is also logical to question the effects of all these technologies being included smart city citizens’ lives.
  5. 5. The need for highly educated well qualified people to design, develop, deploy and operate smart city infrastructures, platforms and applications is growing rapidly. Specialized education and training in these field need to be developed and offered to create this type of workforce.
  6. 6. There is also the need to set common measurements and control policies for smart applications. Monitoring and control of initiatives and implementations using different tools and techniques is required in a smart city to ensure the correctness, effectiveness and quality f deployed smart city applications.

7 Conclusion

Smart city and big data are two modern and important concepts; therefore, many started integrating them to develop smart city applications that will help reach sustainability, better resilience, effective governance, enhanced quality of life, and intelligent management of smart city resources. Our study explored both concepts and their different definitions and we came to identify some common attributes for each. Despite the varying definitions each concept has a number of characteristics that uniquely defines it. Relying on these common characteristics, we were able to identify the general benefits of using big data to design and support smart city applications.

From there, we discussed the various opportunities available and this will result in building smart applications capable of utilizing all available data to enhance their operations and outcomes. We also discussed the various challenges in this domain and identified several issues that may hinder big data applications development efforts. Based on that discussion, we suggested a list of general requirements for big data smart city applications. There requirements are necessary to design and implement effective and efficient applications. In addition, these requirements also try to address the challenges and propose different ways to resolve some of the issues and generate better results. Finally we discussed some of the main open issues that need to be further investigated and addressed to reach a more comprehensive view of smart cities and develop hem in a holistic well thought out model.

Building and deploying successful big data smart city applications will require addressing the challenges and open issues, following rigorous design and development models, having well trained human resources, utilizing simulation models and being ell prepared and well supported by the governing entities. With all success factors in place and better understanding of the concepts, making a city smart will be possible and further enhancing it for smarter models and services will be an attainable and sustainable goal.

References

  1. Pantelis K, Aija L. Understanding the value of (big) data. In Big Data, 2013 IEEE International Conference on IEEE; 2013. pp. 38–42.
  2. Khan Z, Anjum A, Kiani SL. Cloud Based Big Data Analytics for Smart Future Cities. In Proceedings of the 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing. IEEE Computer Society; 2013. pp. 381–386.
  3. Kitchin R. The real-time city? Big data and smart urbanism. GeoJournal. 2014;79(1):1–14. ArticleGoogle Scholar
  4. Townsend AM 2013. Smart cities: big data, civic hackers, and the quest for a new utopia. WW Norton & Company.
  5. Batty M. Big data, smart cities and city planning. Dialogues Hum Geog. 2013;3(3):274–9. ArticleMathSciNetGoogle Scholar
  6. Vilajosana I, Llosa J, Martinez B, Domingo-Prieto M, Angles A, Vilajosana X. Bootstrapping smart cities through a self-sustainable model based on big data flows. Commun Mag, IEEE. 2013;51(6):128–34. ArticleGoogle Scholar
  7. Michalik P, Stofa J, Zolotova I. Concept definition for Big Data architecture in the education system. In Applied Machine Intelligence and Informatics (SAMI), 2014 IEEE 12th International Symposium on 2014. pp. 331–334.
  8. Fan W, Bifet A. Mining big data: current status, and forecast to the future. ACM SIGKDD Explor Newsl. 2013;14(2):1–5. ArticleMATHGoogle Scholar
  9. Al-Hader M, Rodzi A. The smart city infrastructure development & monitoring. Theor Empir Res Urban Manage. 2009;4(2):87–94. Google Scholar
  10. Bertot JC, Choi H. Big data and e-government: issues, policies, and recommendations. In Proceedings of the 14th Annual International Conference on Digital Government Research. ACM; 2013. pp. 1–10.
  11. Kramers A, Höjer M, Lövehagen N, Wangel J. Smart sustainable cities–Exploring ICT solutions for reduced energy use in cities. Environ Model Software. 2014;56:52–62. ArticleGoogle Scholar
  12. Neirotti P, De Marco A, Cagliano AC, Mangano G, Scorrano F. Current trends in Smart City initiatives: Some stylised facts. Cities. 2014;38:25–36. ArticleGoogle Scholar
  13. Tantatsanawong P, Kawtrakul A, Lertwipatrakul W. Enabling future education with smart services. In SRII Global Conference (SRII), 2011 Annual IEEE; 2011. pp. 550–556.
  14. West DM. Big Data for Education: Data Mining, Data Analytics, and Web Dashboards. Governance Studies at Brookings. 2012. Available athttp://www.brookings.edu/~/media/Research/Files/Papers/2012/9/04%20education%20technology%20west/04%20education%20technology%20west.pdf
  15. Marsh O, Maurov-Horvat L, Stevenson O. Big Data and Education: What’s the Big Idea?. UCL Policy Briefing. 2014. Available at https://www.ucl.ac.uk/public-policy/public-policy-briefings/big_data_briefing_final.pdf
  16. Aguilera G, Galan JL, Campos JC, Rodríguez P. An Accelerated-Time Simulation for Traffic Flow in a Smart City. FEMTEC. 2013;2013:26. Google Scholar
  17. U.S. Department of Energy, “Smart Grid / Department of Energy,” Web: http://energy.gov/oe/technology-development/smart-grid, RetrievedSep. 23, 2015.
  18. Yin J, Sharma P, Gorton I, Akyoli, B. Large-Scale Data Challenges in Future Power Grids. In Service Oriented System Engineering (SOSE), 2013 IEEE 7th International Symposium on IEEE; 2013. pp. 324–328.
  19. Mohamed N, Al-Jaroodi J, “Real-time big data analytics: Applications and challenges,” High Performance Computing & Simulation (HPCS), 2014 International Conference on, vol., no., 2014. pp. 305,310.
  20. Khan M, Uddin MF, Gupta N. Seven V’s of Big Data understanding Big Data to extract value. In American Society for Engineering Education (ASEE Zone 1), 2014 Zone 1 Conference of the IEEE; 2014. pp. 1–5.
  21. Su K, Li J, Fu H. Smart city and the applications. In Electronics, Communications and Control (ICECC), 2011 International Conference on IEEE; 2011. pp. 1028–1031.
  22. Lee CH, Birch D, Wu C, Silva D, Tsinalis O, Li Y, Guo Y. Building a generic platform for big sensor data application. In Big Data, 2013 IEEE International Conference on IEEE; 2013. pp. 94–102.
  23. Kim GH, Trimi S, Chung JH. Big-data applications in the government sector. Commun ACM. 2014;57(3):78–85. ArticleGoogle Scholar
  24. Chourabi H, Nam T, Walker S, Gil-Garcia JR, Mellouli S, Nahon K, Scholl HJ. Understanding smart cities: An integrative framework. In System Science (HICSS), 2012 45th Hawaii International Conference on IEEE; 2012. pp. 2289–2297.
  25. Xiaofeng M, Xiang C. Big data management: concepts, techniques and challenges [J]. J Comput Res Dev. 2013;1:98. Google Scholar
  26. Borkar V, Carey MJ, Li C. Inside Big Data management: ogres, onions, or parfaits?. In Proceedings of the 15th International Conference on Extending Database Technology. ACM; 2012. pp. 3–14.
  27. Chaudhuri S. What next?: a half-dozen data management research goals for big data and the cloud. In Proceedings of the 31st symposium on Principles of Database Systems. ACM; 2012. pp. 1–4.
  28. Dittrich J, Quiané-Ruiz JA. Efficient big data processing in Hadoop MapReduce. Proc VLDB Endowment. 2012;5(12):2014–5. ArticleGoogle Scholar
  29. Middleton A, Solutions PDLR. Hpcc systems: Introduction to hpcc (high-performance computing cluster). White paper, LexisNexis Risk Solutions; 2011.
  30. Alexandrov A, Bergmann R, Ewen S, Freytag JC, Hueske F, Heise A, et al. The Stratosphere platform for big data analytics. VLDB J. 2014;23(6):939–64. ArticleGoogle Scholar
  31. Biem A, Bouillet E, Feng H, Ranganathan A, Riabov A, Verscheure O, Moran C. Ibminfosphere streams for scalable, real-time, intelligent transportation services. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data ACM; 2010. pp. 1093–1104.
  32. Ji C, Li Y, Qiu W, Awada U, Li K. Big data processing in cloud computing environments. In Pervasive Systems, Algorithms and Networks (ISPAN), 2012 12th International Symposium on IEEE; 2012. pp. 17–23.
  33. Wu X, Zhu X, Wu GQ, Ding W. Data mining with big data. IEEE Trans Knowl Data Eng. 2014;26(1):97–107. ArticleGoogle Scholar
  34. Tene O, Polonetsky J. Big data for all: Privacy and user control in the age of analytics. Nw J Tech Intell Prop. 2012;11:xxvii. Google Scholar
  35. Business analytics from basics to value, Gartner, Retrieved 4 May 15, Published on Jun 10, 2014, available athttp://www.slideshare.net/sucesuminas/business-analytics-from-basics-to-value.

Author information

Authors and Affiliations

  1. College of Information Technology, UAE University, P.O. Box 15551, Al Ain, UAE Eiman Al Nuaimi & Hind Al Neyadi
  2. Middleware Technologies Labs., P.O. Box 33186, Isa Town, Bahrain Nader Mohamed
  3. Department of Engineering, Robert Morris University, 6001 University Blvd., Moon Township, PA, 15108, USA Jameela Al-Jaroodi
  1. Eiman Al Nuaimi